Thermostatic Reactions: Positive and Negative
Budgetary Punctuations

Carla M. Flink *
Scott E. Robinson †
Chad M. King ‡

Last updated: March 10, 2017

Abstract

Scholars of punctuated equilibrium theory have worked to identify the determinants of policy punctuations. More specifically, punctuated equilibrium theory is applied to public budgeting to explain financial volatility and stability in government resources. In an exploration of the time series aspect of punctuations, scholars have found that punctuations occur in clusters—having a recent budgetary punctuation increases the likelihood of having another budgetary punctuation in the next time period. Missing in this literature is an understanding of the direction, positive or negative, of budgetary punctuations over time. Are budgetary punctuations corrective, with a grouping of positive and negative changes? Or, do budgetary punctuations occur in trends of positive or negative changes? These are important questions not only for academics, but practitioners who must continue their work with volatile financial resources. In an analysis of over 1000 Texas school districts for a nearly 20 year period, results support the notion that positive and negative budgetary punctuations group together. Negative budgetary punctuations are more likely to lead to positive budgetary punctuations and positive budgetary punctuations are more likely to lead to negative ones. This suggests a type of thermostatic reaction of budgetary punctuations.

*American University
†University of Oklahoma
‡Texas A&M University–Commerce
1 Introduction

Adapted from a theory of the policy process, Punctuated Equilibrium Theory (PET) describes budgetary outputs as mostly stable with periods of rapid, large changes. Foundational research in PET identified this pattern of budgetary change in a variety of settings in local, state, and federal budgeting. The dynamics between incremental and punctuated changes were shown to apply broadly in public budgeting. As an advancement in the field, scholars in PET have progressed from simply identifying the pattern of PET to examining the characteristics of public organizations that lead to more punctuated (or more incremental) budgetary processes. Organizational performance, personnel turnover, organization size, level of centralization, and organizational history are all features that scholars have found to influence the frequency of punctuated budgetary changes in public organizations (Flink 2017; Robinson et al. 2007; Robinson, Flink, and King 2014).

A new dimension to PET explores not just the shape of the distribution of all budgetary changes for a time period, but the occurrence of punctuations at specific points in time. The overall distribution could not reveal if punctuations occurred from one year to the next or were spread out over time. Research has shown that large changes are clustered together—one large budgetary punctuation leads to more budgetary punctuations (Robinson, Flink, and King 2014). Missing in this line of research is the direction of the punctuation—positive or negative. Are positive and negative large budgetary changes grouped together? Or, are positive and negative punctuations clustered separately by their direction?

This paper explores these questions in over 1000 local government entities, Texas school districts. Two models of budgetary punctuations are proposed. First is the Thermostatic Model in which positive and negative budgetary punctuations are clustered. When budgets have a sharp decrease, a major increase is likely to occur in the next year or two. Likewise, a positive budgetary punctuation is followed by a negative punctuation. In this model funding returns to an equilibrium level. The other model, the Trending Model, describes budgetary
punctuations as continuing trends—positive or negative budgetary punctuations are grouped. This pattern of punctuations leads to a new base level of funding for a program. In multiple logit models, results consistently support the Thermostatic Model of budgetary punctuations. Organizations make a rapid, large budgetary change, then quickly follow with a budgetary move to original levels.

2 Literature Review

2.1 The Origins of Incrementalism and its Critics

The study of policy change has taken on many forms and preceded along many paths over the decades. One approach to the study of this broad question has focused on the nature of the systems that create policy and how these systems constrain the speed and breadth of policy change.

One strain of this research tradition is of particular interest to the study of budgets. Wildavsky (Wildavsky 1964; Wildavsky and Caiden 1988) drew from the prior tradition on incremental policy change—most often associated with Lindblom (1959)—to argue that budgetary processes (and, in particular, the federal budgetary policy process) are incremental. Budgets represent compromises between diverse actors and any proposed large change threatens the existing coalitions. As a result, budgetary changes tend to be small and incremental.

There was an almost immediate reaction to the strong form of Wildavsky’s incrementalist characterization of the budgetary process. Schulman (1975) argued that there were important counter-examples to the notion that incrementalism was a covering law for policy change processes. He argued that certain policy domains could not proceed incrementally because they could not be subdivided into smaller parts. His signal example is space policy and NASA. One cannot build slowly towards a space program, Schulman argued. One has to
make large (in an absolute sense) and non-incremental (in a sense of changes from previous years) to proceed in these domains of policy.

The resulting debate between proponents of incrementalism as a generally applicable covering law and critics who pointed to counter-examples continued for decades. This debate was further complicated by draft and confusion within the meaning of various terms in their debate including how one should define and measure incrementalism (Berry 1990; Tucker 1982; Wanat 1974; John and Bevan 2012). As a theory, incrementalism has been utilized by scholars as a descriptive, explanatory, normative, and a predictive theory. Each of those theoretical lenses has yielded various ways for incrementalism to be measured.

2.2 Punctuated Equilibrium Approaches

The impasse between incrementalism and its critics was eventually overcome by the translation of a theory from paleontology. Baumgartner and Jones (2009) argued that policy changed proceeded through two separate patterns. Most of the time, policy change was slow – as the incrementalists had argued. However, conditions could make large change (punctuated change) possible through the operation of positive attention cycles and dramatic external events – consistent with many of the critics of incrementalism. Punctuated equilibrium theory bridged the divide between theories of fast and slow policy change by acknowledging both dynamics exist in the policy process.

The resulting theory of punctuated policy change led to specific predictions about the distribution of policy changes. Particularly, the distribution diverged from normal to have a leptokurtic shape – tall center and heavy tails of the distribution. Some of the earliest tests of the predictions of the punctuated equilibrium model used budgetary changes as the indicator of policy change (Jones, True, and Baumgartner 1997; Jones, Baumgartner, and True 1998). These investigations found support for the punctuated equilibrium model of policy change in the observed distribution of budgetary chances in federal budgetary categories.
2.3 Hypothesis Testing

The study of the distributions of policy-relevant outputs spread rapidly to accommodate tests in various stages of the US federal policy making process (Jones, Sulkin, and Larsen 2003), US state-level budgetary data (Breunig and Koski 2006), US school district-level data (Robinson 2004). Tests also spread to other political system to find similar patterns of policy change in a wide range of nations (Baumgartner et al. 2009; Breunig 2006). The result of these various studies was a persuasive case that the mixture of incremental and punctuated policy changes characterized all policy systems studied (Jones et al. 2009).

The distributional approach to punctuated policy change has revealed a great deal about patterns common across institutional environments. However, the approach is limited in the sorts of hypotheses it can test – in part because comparisons across data distributions call for several large databases. A separate methodological tradition emerged that tested hypotheses about how characteristics of the policy systems could lead to different expectations of change. Notably, this approach sought research designs more similar to traditional regression-based hypothesis testing.

Jordan’s work on local government expenditures represents an early example of this tradition (Jordan 2003). Jordan defined a threshold beyond which a change could be categorized as non-incremental (a “punctuation”). She then compared different types of local government expenditures (police, highways, public buildings, etc.) to identify which most closely fit the expectations of punctuated equilibrium theory.

Robinson adopted a similar approach to studying local government expenditures because of the leverage they provide on questions of institutional determinants of policy change. The earliest work adapted the distributional methodology to direct hypothesis testing (Robinson 2004) comparing school districts with high and low values of bureaucratization. The later work adopted a more direct categorization of each budgetary outcome as incremental, mod-
erate, or large changes (Robinson et al. 2007). This hypothesis testing approach allowed for multivariate testing within a regression context and compared the influence of bureaucratization and organization size on the propensity of an organization to experience punctuated budgetary change – while allowing for some control variables as well. The approaches of Jordan and Robinson opened up a methodological space for testing hypotheses for factors related to increased or decreased rates of non-incremental policy change.

2.4 Recent Innovations

Recent work has further refined and extended the hypothesis testing approach to studying punctuated or non-incremental budgetary change.

Some work has built directly on the distributional analysis methodology to construct comparisons more amenable to formal hypotheses testing – notably through the use of l-kurtosis measures. L-kurtosis provides a normed characterization of a distribution that facilitates comparison across samples – a necessity for comparison of samples of budgetary change. The resulting methodology has undergirded studies of American state budgets (Breunig and Koski 2006, 2012) and cross-national comparisons (Jones et al. 2009; Baumgartner et al. 2009; Breunig 2006).

Others have further developed our understanding of the institutional characteristics that facilitate or impede non-incremental budgetary changes. Ryu (2011a,b, 2009) used US state sub-function expenditure patterns to assess the role of institutional friction and legislative professionalism on budgetary change. Epp and Baumgartner (2016) examined how institutional complexity and capacity influence budgetary punctuations. In the analysis of US budget authorities from 1947-2012, the authors find that complexity leads to more punctuations and capacity leads to more incremental budgetary changes (Epp and Baumgartner 2016).

A downfall of comparing distributions is that the time-series elements of the data are
removed. With regards to punctuations, this left questions on whether the large budgetary changes occurred multiple years in a row or infrequently over time. Robinson, Flink, and King (2014) examined this question by proposing two theoretical models of budgetary punctuations – the institutional and error accumulation models. Empirical analyses showed that budgetary punctuations occur in groupings. In other words, the probability of a budgetary punctuation is positively related to having had a recent punctuation.

In her work Flink (2017), incorporated theories from public administration literature to predicting policy change. Endogenous organization change (personnel instability) and policy feedback (organization performance) are examined as predictors of categories of budgetary changes. Findings show that high organization performance and low personnel turnover lead to more incremental budgetary changes. Furthermore, Flink (2017) demonstrates that magnitudes of budgetary changes (incremental, medium, punctuated) should be analyzed further into positive and negative categories, something scholars have not done with consistency throughout the literature. The empirical results in Flink (2017) reveal that medium size budgetary changes, when split between positive and negative changes, give competing expectations in the results.

A recent study by Jensen, Mortensen, and Serritzlew (2016) gives three revisions to the Dynamic Model of Choice for Public Policy (DMCPP) (Jones and Baumgartner 2005) with emphasis to public budgets. First, they provide a formalized version of DMCPP. They then suggest three revisions to DMCPP–accounting for signal accumulation, responsiveness across issue domains, and efficiency of response across issue areas. These changes provide some improvements to the DMCPP, however, the authors proposed that future research could make greater gains in developing revisions that more closely align with the model’s distributional predictions.
3 Theory and Hypotheses

The findings of Robinson, Flink, and King (2014) provide insight on the time series aspect of punctuated budgetary changes. However, the literature on punctuated changes has not considered the direction—positive or negative—of each of the budgetary punctuations that compose a set. Knowing if budgetary changes are positive or negative (and not just the size of the change) has practical use for scholars and managers working in public organizations. If positive budgetary punctuations are likely to occur for multiple fiscal years, then public organizations can plan to expand their work. Multiple negative budgetary punctuations lead public organizations to downsize their workforce and projects. On the other hand, positive and negative budgetary punctuations bundled together lead managers to strategize for enduring a significant budget cut or exploiting a sizable financial increase for one fiscal year before the next budgetary punctuation restores monetary resources to their original amount.

This study will focus on separately predicting positive and negative budgetary punctuations as a function of previous positive and negative punctuations along with other organizational features identified in the literature on punctuated budgetary changes. Two hypotheses are developed for each of the models of punctuated budgetary change.

3.1 Budgetary Punctuations as Thermostatic Reactions

Public organizations may experience budgetary punctuations that work as corrective processes—a drastic change followed by another rapid change in the opposite direction. The budget keeps a general equilibrium point. We describe this pattern as a thermostatic reaction of budgetary punctuations. It assumes that managers are able to take control of budgetary allocations to make major alterations each fiscal year. The back and forth pattern of punctuations could be observed in public organizations for a number of reasons: major fluctuations in overall
resources, a reprioritization of policy objectives, environmental shocks, performance goals, and general mismanagement of financial resources may contribute to a thermostatic reaction in the budget.

This model yields two hypotheses:

Hypothesis 1: “Positive Correction.” *The probability of a positive budgetary punctuation is positively related to having experienced a negative budgetary punctuation.*

Hypothesis 2: “Negative Correction.” *The probability of a negative budgetary punctuation is positively related to having experienced a positive budgetary punctuation.*

Figures 1 and 2 illustrate both of the hypotheses. Each figure shows the dollar amount, from x to $x + n$, for a program over the course of five fiscal years (t to $t + 4$). Figure 1 has a budget series consistent with the expectations of the “Positive Correction” from Hypothesis 1. From year to year, funding levels experience incremental changes. However, in Figure 1, there is a drastic budget decrease from $t + 1$ to $t + 2$. That is followed by a positive budgetary punctuation in the next fiscal year to restore funding near original levels.

Figure 2 displays the other prediction of the thermostatic model, a “Negative Correction.” Over the course of the five fiscal years in the figure, the funding level at the start (t) is about the same amount as at the end ($t + 4$) for the program. In the middle of this budget series is a cluster of punctuations. A positive punctuation occurs at $t + 2$. The financial growth is short-lived, though. A negative budgetary punctuation occurs in the next fiscal year.

In both Figure 1 and Figure 2, the major financial alterations are not sustained over multiple fiscal years. Figure 1 has a one-time funding cut, while Figure 2 has a single influx of money. The thermostatic model theorizes that budgetary punctuations are temporary shocks to policy systems – budgetary punctuations are not step changes to a new budgetary base level of funding. The thermostatic model maintains a normal or equilibrium funding level over time.
3.2 Budgetary Punctuations as Trends

The other model theorized in this study is the “Trending Model.” This model predicts multi-year punctuations that persist in either the positive or negative direction. The grouping of punctuations yields a budget that is trending upwards or downwards. This pattern of
budgetary punctuations could result from a major change in overall financial resources—economic prosperity can lead to climbing budgets, while hard financial times can shrink funds. Trending budgets could also suggest a reprioritization of a program or policy area. Dedication to a program could yield multiple positive punctuations. Negative budgetary punctuations signal a shift away from a policy, mission, or goal of the organization. New leadership in the organization could lead to different policy priorities, manifesting as drastic shifts in a program’s monetary resources. In any of these cases, the financial pattern over time would show a separate clustering of positive and negative punctuations.

The hypotheses for the trending model are:

Hypothesis 3: “Positive Clustering.” The probability of a positive budgetary punctuation is positively related to having experienced a positive budgetary punctuation.

Hypothesis 4: “Negative Clustering.” The probability of a negative budgetary punctuation is positively related to having experienced a negative budgetary punctuation.

Figures 3 and 4 illustrate each of the hypotheses, similarly to the figures from the thermostatic model. Figure 3 demonstrates Hypothesis 3, “Positive Clustering.” This figure shows how positive budgetary punctuations group together. The budget keeps rising in drastic increments, resulting in a more highly funded program. On the other hand, Figure 4 displays negative budgetary punctuations over multiple fiscal years. This is referred to as “Negative Clustering” in Hypothesis 4. Financial resources for this program take a massive cut from t to $t + 4$. Overall, these figures show positive budgeting punctuations clustering separately from negative budgetary punctuations.

Unlike the thermostatic model that portrays budgetary punctuations as shocks to the equilibrium of a program’s budget, the trending model reveals budgetary punctuations as a quick method to yield a new base level of funding. In Figures 1 and 2, the budget returns to a similar level as it began the series. In Figures 3 and 4, the program budget adjusts to a new high or low level of funding.
4 Data and Methods

Data for this study come from one of the most prevalent local governments—school districts. The sample contains budgetary, student and teacher demographic, student performance, and other district level information for Texas school districts from 1993 to 2010. In Texas,
there are over 1000 school districts that operate independently, yet maintain the shared
goal of educating students. They all share a similar regulatory environment and accounting
standards. While school districts must abide by state and federal program fundings formulas,
each school district exercises autonomy over their budgetary decisions. It is a top-down
financial process with the school district superintendent and school board making the major
budgetary decisions.

For this study, there will be four separate logit models. The first two logit models will
use positive punctuations as the dependent variable. The last two logit models will use
negative punctuations as the dependent variable. Both dependent variables are dummy
variables indicating the presence of a positive or negative punctuated budgetary change for
that year. A positive punctuation is a budgetary change greater than 35.5 percent. A
negative budgetary punctuation is a budgetary decrease more negative than -33 percent.
The cut points are chosen to stay consistent with Robinson, Flink, and King (2014). In
the study, Robinson, Flink, and King (2014) determined the cut points for punctuations
by overlaying a normal distribution on the histogram of all budgetary changes. The two
points of intersection of the histogram and normal curve in the tails of the distribution
(above and below the mean of the distribution), are used to mark the point of punctuation.
All observations in the tails of the distribution beyond the point of intersection with the
histogram are counted as punctuations.

There are two sets of independent variables. The first set is the one year lag of a positive or
negative punctuation (two separate dummy variables). Since a one year lag is a very narrow
timespan, the second set of independent variables widens the window of prior punctuation
to two years. These are dummy variables indicating if a positive or negative (two unique
variables) occurred in the past two years.

Several other control variables are included in each logit model. To account for organiza-
tion performance and personnel stability the all student standardized test pass rate (Flink
2017) and teacher turnover were included (Flink 2017). Organization structure was controlled for by the percent of funds spent on centralization (Robinson et al. 2007). Furthermore, the centralization variable squared was included to account for the declining impact of centralization (Ryu 2011). Size of the organization was controlled for by the number of students enrolled in a district and the enrollment growth rate (Robinson et al. 2007). Additionally, year fixed effects were included in the models. The descriptive statistics are provided in Table 1 found below.

Table 1: Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Test Pass Rate (L)</td>
<td>69.6</td>
<td>17.1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Teacher Turnover (L)</td>
<td>18.2</td>
<td>12.1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Centralization</td>
<td>7.9</td>
<td>4.3</td>
<td>1</td>
<td>85.9</td>
</tr>
<tr>
<td>Centralization Squared</td>
<td>80.7</td>
<td>162.1</td>
<td>1</td>
<td>7378.8</td>
</tr>
<tr>
<td>Enrollment (logged)</td>
<td>6.9</td>
<td>1.5</td>
<td>1.8</td>
<td>12.3</td>
</tr>
<tr>
<td>Enrollment growth</td>
<td>1.8</td>
<td>13.8</td>
<td>-76.9</td>
<td>1074.8</td>
</tr>
<tr>
<td>Punctuation (1) No Punctuation (0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Punctuation</td>
<td>325</td>
<td>17,575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative Punctuation</td>
<td>142</td>
<td>17,758</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N = 17,900 for all variables.

5 Results

Results for the four logit models are presented in Table 2. Overall, each of the regressions support the Thermostatic Reactions Model of budgetary punctuations. There is no support for the Trending Model that budgetary punctuations move only upwards or downwards.

Models 1 and 2 have positive punctuations as the dependent variable. Model 1 considers how a positive or negative punctuation in the prior year affects the probability of a positive budgetary punctuation. The presence of a negative punctuation is positive and statistically
significant. This means that large budget decreases are generally short-lived—a budget recovery is likely in the next time period. Hypothesis 1 is supported. For Hypothesis 3, there is little evidence to support it; positive budgetary punctuations are not related to having another positive punctuation in the next time period.

Model 2 examines if a positive or negative punctuation occurred in the previous two years. Like Model 1, the two year window for negative budgetary punctuations is positive and statistically significant. Hypothesis 1 finds evidence again in this model. The two year lag for positive punctuations is negative and statistically significant. While this finding does not strictly support the Thermostatic Model, it does go against the Trending Model of budgetary punctuations (Hypothesis 3). Positive budgetary punctuations are less likely to lead to more positive punctuations.

Models 3 and 4 predict negative budgetary punctuations. For the one year lag (Model 3), negative punctuations do not impact the occurrence of future large negative budgetary changes. This does not promote Hypothesis 4. On the other hand, having a positive budgetary punctuation leads to a higher chance of a negative budgetary punctuation in the next year, supporting Hypothesis 2. Opening up the recent budgetary punctuation window to two years, Model 4 shows a similar pattern. Positive punctuations are positive and statistically significant, in line with Hypothesis 2. Negative punctuations, however, do not meet the .05 significance threshold. Taken together, both Models 3 and 4 support the Thermostatic Reactions Model of budgetary punctuations.

The control variables hold steady results across all four of the models. The all student standardized test pass rate is negative and statistically significant across all models. This is consistent with the literature that says higher pass rates will lead to more incremental changes. The teacher turnover variable is positive and statistically significant across all models, keeping in line with the literature that states higher turnover leads to higher budgetary instability. Centralization is insignificant in Models 1 and 2 and positive and statistically
significant in Models 3 and 4. Only in Model 4 is centralization squared statistically significant, supporting the diminishing impact of centralization. Enrollment is highly negative and statistically significant across models. Enrollment growth is positive and significant in all models except Model 1.

Table 2: Logit Models

<table>
<thead>
<tr>
<th></th>
<th>Positive Punctuation DV</th>
<th>Negative Punctuation DV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
<td>Model 2</td>
</tr>
<tr>
<td>Negative Punctuation (L)</td>
<td>2.20 (7.46)</td>
<td>-0.28 (0.72)</td>
</tr>
<tr>
<td>Positive Punctuation (L)</td>
<td>-0.46 (1.62)</td>
<td>1.79 (6.84)</td>
</tr>
<tr>
<td>Negative Punctuation (2L)</td>
<td>1.71 (7.45)</td>
<td>-0.96 (-1.76)</td>
</tr>
<tr>
<td>Positive Punctuation (2L)</td>
<td>-0.60 (-2.67)</td>
<td>1.64 (7.22)</td>
</tr>
<tr>
<td>Student Test Pass Rate (L)</td>
<td>-0.03 (-7.82)</td>
<td>-0.03 (-8.96)</td>
</tr>
<tr>
<td>Teacher Turnover (L)</td>
<td>0.02 (4.11)</td>
<td>0.02 (4.82)</td>
</tr>
<tr>
<td>Centralization</td>
<td>-0.05 (-1.77)</td>
<td>-0.03 (-1.38)</td>
</tr>
<tr>
<td>Centralization Squared</td>
<td>0.001 (1.74)</td>
<td>0.001 (1.63)</td>
</tr>
<tr>
<td>Enrollment (logged)</td>
<td>-0.75 (-10.55)</td>
<td>-0.72 (-11.01)</td>
</tr>
<tr>
<td>Enrollment growth</td>
<td>0.003 (1.30)</td>
<td>0.004 (2.02)</td>
</tr>
<tr>
<td>N</td>
<td>17,670</td>
<td>17,900</td>
</tr>
<tr>
<td>Pseudo R Squared</td>
<td>0.25</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Year fixed effects included in all models. Z score in parentheses. L indicates a one year lag.

6 Conclusion

Research has shown that budgetary punctuations in public organizations happen in groupings over time. The direction of those budgetary changes—positive or negative—has not been examined by scholars. The purpose of this study was to propose two unique models of budgetary punctuations: the Thermostatic Reactions Model and the Trending Model. In the Thermostatic Reactions Model, budgetary punctuations move back and forth around
an equilibrium point; positive and negative punctuations cluster together. In the Trend-
ing Model, budgetary punctuations signal sustained economic prosperity (or downturns) or shifting policy significance. In this model, positive punctuations lead to more positive punctuations and negative punctuations lead to more large budgetary decreases.

In an examination of hundreds of Texas school districts over an 18 year period, the Thermostatic Reactions Model is supported. Of the four hypotheses, Hypotheses 1 (“Positive Correction”) and 2 (“Negative Correction”) were supported in each of the logit models predicting positive and negative budgetary punctuations. For practitioners, this means large budget increases are generally short lived, so they must be exploited to their fullest potential. On the other hand, large budget decreases are also likely to be followed by a significant budget increase. Managers must endure substantial budget cuts for only a short time.

For PET literature, these findings provide further insight into not just predicting when budgetary punctuations occur, but the direction of the budgetary change. This gives a greater understanding of the policy process.

For public budgeting literature, these findings help scholars to understand the movement of budgets, specifically, when major financial changes occur.

Future research can examine other determinants of budgetary punctuations. For one, the management or leadership dimensions can be further explored. Do rapid policy changes occur at the beginning of a manager’s leadership tenure demonstrating an organization’s willingness to embrace new leadership? Or, do rapid policy changes take place later in a manager’s tenure once he/she has learned the workings of the organization and control their surroundings?
References

